(1) Octahedral complexes \rightarrow can be split into 3 categories:

	Number of Electrons	Description
Α	18	18-electron rule obeyed
В	12-18	18-electrons not exceeded
С	12-22	18-electron rule disobeyed

A. Those that obey the 18 electron rule

- Complexes with strong π-acceptor ligands
 - (e.g. [V(CO)₆]⁻, [Cr(CO)₆], [W(CO)₆], [Mn(CO)₆]⁺)
 - t_{2g} strongly bonding ∴ filled
 - e_g^{*} strongly antibonding (due to synergic bonding) ∴ empty
- Complexes of strong π-acceptor ligands tend to obey the 18-electron rule irrespective of their coordination number (*e.g.* [Fe(CO)₅], [Fe(CO)₄]²⁻, [Ni(PPh₃)₄]).
- Note: d⁸ and d¹⁰ configurations are exceptions to this rule (see later).

B. Octahedral complexes with 12-18 electrons

- 2nd and 3rd row TM complexes (high in the spectrochemical series of metal ions)
- σ-donor or π-donor ligands (low to medium in the spectrochemical series)
- e.g. [ZrF₆]²⁻ (Zr⁴⁺, d⁰, 12 e⁻), [PtF₆]²⁻ (Pt⁴⁺, d⁶, 18 e⁻), [OsCl₆]²⁻ (Os⁴⁺, d⁴, 16 e⁻), [WMe₆] (W⁶⁺, d⁰, 12 e⁻), [Zr(OH₂)₆]³⁺ (Zr³⁺, d¹, 13 e⁻)
 - t_{2g} non-bonding or weakly antibonding (because the ligands are either σ-donors or π-donors) ∴ t_{2g} can contain from 0 to 6 electrons
 - e_g* fairly strongly antibonding (because 2nd/3rd row TMs bond more effectively to the ligands)∴ e_g* empty

Octahedral, σ -donor ligands (e.g. [WMe₆])

C. Octahedral complexes with 12-22 electrons

- 1st row TM complexes (low in the spectrochemical series of metal ions)
- σ-donor or π-donor ligands (low to medium in the spectrochemical series)
- *e.g.* [TiF₆]²⁻ (Ti⁴⁺, d⁰, 12 e⁻), [Co(NH₃)₆]³⁺ (Co³⁺, d⁶, 18 e⁻), [Cu(OH₂)₆]²⁺ (Cu²⁺, d⁹, 21 e⁻)
 - t_{2g} non-bonding or weakly antibonding (because the ligands are either σ-donors or π-donors) ∴ t_{2g} can contain from 0 to 6 electrons
 - e_g* only weakly antibonding (because 1st row TMs don't bond as effectively to the ligands) ∴ e_g* can contain from 0 to 4 electrons

Octahedral, π -donor ligands (e.g. [Cu(OH₂)₆]²⁺)

(2) Tetrahedral complexes:

- Tetrahedral complexes cannot exceed 18 electrons because there are no low lying MOs that can be filled obtain tetrahedral to complexes with >18 electrons. In addition, a transition metal complex the maximum of with 10 d-electrons, will receive 8 electrons from the ligands \rightarrow a total of 18 electrons.
- Δ_t is small (~4/9 Δ_o), so there is no particular preference for the e or t_2 orbitals to be filled (can have 8-18 electrons) similar to class C octahedral complexes.
- *e.g.* [Ni(PPh₃)₄] (Ni⁰, d¹⁰, 18-electron complex)

(3) Square planar complexes (d⁸, 16 electrons):

- d⁸-metals with 4 ligands ∴ 16-electron complexes
- Common for metals and ligands high in the spectrochemical series
- Rh^I, Ir^I, Pd^{II}, Pt^{II}, Au^{III} almost always square planar, all of which are highly common oxidation states, except Au^{III}, which is quite oxidizing.
- Ni^{II} can be square planar, but only with strong π-acceptor ligands (because 1st row TMs are lower in the spectrochemical series than 2nd or 3rd row TMs).
- Co^I is almost never square planar because it is a first row transition metal in a low oxidation state (very low in the spectrochemical series for metals).
- d⁸ Cu^{III} and Ag^{III} complexes are extremely rare and highly oxidising.
- d⁸ Ru⁰ and Os⁰ are not square planar (2nd and 3rd row TMs but low in the spectrochemical series of metals because their oxidation state is zero).
- Cu^{II} d⁹ complexes are sometimes square planar (*e.g.* [Cu^{II}(py)₄]²⁺) – this may be considered an extreme form of Jahn-Teller distortion.

(4) Linear complexes (d¹⁰, 14 electrons):

- d¹⁰ metals with 2 ligands ... 14-electron complexes
- Common for Agⁱ, Auⁱ and Hgⁱⁱ
- Less common for Cu¹, Zn^{II} and Cd^{II}
- For d¹⁰ complexes, there is a relatively small energy difference between the d, s and p orbitals (*e.g.* 5d, 6s and 6p for Au^I).
- This permits extensive hybridization between the d_{z2}, s and p_z orbitals as shown below:

(4) Linear complexes (d¹⁰, 14 electrons):

- More common for group 11 (Cu, Ag, Au) than group 12 (Zn, Cd, Hg) because the energy difference between the d, s and p-orbitals is smaller for group 11.
- More common for the heavier elements (Ag^I, Au^I, Hg^{II}).
- e.g. [Ag(CN)₂]⁻, [Ag(NH₃)₂]⁺, [Cu(NH₃)₂]⁺, [(R₃P)AuCl], [HgMe₂], [CdMe₂], [ZnMe₂]
- However, there are also lots of tetrahedral complexes of Ag¹, Au¹, Cu¹, Zn¹¹, Cd¹¹ and Hg¹¹ (*e.g.* 14 e⁻ linear [(R₃P)AuCl] + 2 PR₃ ← → 18 e⁻ tetrahedral [(R₃P)₃AuCl]).

- Distribution of coordination numbers for crystallographically characterized Cu^I, Ag^I, and Au^I compounds as found in the Cambridge Structural Database.
- Alvarez, S. et al., J. Am. Chem. Soc. 2004, 1465-1477.

(5) Steric effects and early transition metal complexes:

Steric effects can produce low-coordinate (not many ligands) complexes which often have <18 electrons.

• For early-mid transition metals (*e.g.* d⁰ metals) it is often not possible to fit the number of ligands around the metal that would be required to reach an electron count of 18.

(6) Strong oxidants or reductants:

Many 18 electron complexes can be reduced or oxidized to give 17 or 19 electron complexes. Such compounds are often good oxidizing or reducing agents (*i.e.* a preference to 'get back to being' 18-electron compounds).

