(1) Octahedral complexes \rightarrow can be split into 3 categories:

A. Those that obey the 18 electron rule

- **Examplexes with strong** π **-acceptor ligands**
	- \bullet (*e.g.* [V(CO)₆], [Cr(CO)₆], [W(CO)₆], $[Mn(CO)_{6}]^{+}$
	- t_{2g} strongly bonding ∴filled
	- \bullet e^* strongly antibonding (due to synergic bonding) \therefore empty
- Complexes of strong π -acceptor ligands tend to obey the 18-electron rule irrespective of their coordination number (*e.g.* [Fe(CO)₅], [Fe(CO)₄]²⁻, $[Ni(PPh₃)₄]$).
- Note: d^8 and d^{10} configurations are exceptions to this rule (see later).

B. Octahedral complexes with 12-18 electrons

- **2**nd and 3rd row TM complexes (high in the spectrochemical series of metal ions)
- s**-donor or** p**-donor ligands** (low to medium in the spectrochemical series)
- **e** e.g. $[ZrF_6]^{2}$ ⁻ (Zr^{4+} , d^0 , 12 e⁻), $[PtF_6]^{2}$ ⁻ (Pt^{4+} , d⁶, 18 e⁻), [OsCl₆]²⁻ (Os⁴⁺, d⁴, 16 e⁻), $[WMe_{6}]$ (W⁶⁺, d⁰, 12 e⁻), $[Zr(OH_{2})_{6}]^{3+}$ (Zr³⁺, d^1 , 13 e^-)
	- \bullet t_{2g} non-bonding or weakly antibonding (because the ligands are either σ -donors or π -donors) \therefore t_{2g} can contain from 0 to 6 electrons
	- \bullet e_g* fairly strongly antibonding (because 2nd/3rd row TMs bond more effectively to the ligands) \therefore $\mathsf{e_g}^*$ empty

C. Octahedral complexes with 12-22 electrons

- **1 1**st **row TM complexes** (low in the spectrochemical series of metal ions)
- s**-donor or** p**-donor ligands** (low to medium in the spectrochemical series)
- **e** e.g. $[\text{TiF}_6]^2$ ⁻ $(\text{Ti}^{4+}, \text{d}^0, 12 \text{ e}^-)$, $[\text{Co(NH}_3)_6]^{3+}$ (Co³⁺, d⁶, 18 e⁻), [Cu(OH₂)₆]²⁺ (Cu²⁺, d⁹, 21 e –)
	- \bullet t_{2g} non-bonding or weakly antibonding (because the ligands are either σ -donors or π -donors) $\mathrel{\mathop:}$ t_{2g} can contain from 0 to 6 electrons
	- \bullet e_g* only weakly antibonding (because 1st row TMs don't bond as effectively to the ligands) \therefore e $_{\mathrm{g}}$ * can contain from 0 to 4 electrons

Octahedral, π -donor ligands (e.g. [Cu(OH₂)₆]²⁺)

(2) Tetrahedral complexes:

- Tetrahedral complexes cannot exceed 18 electrons because there are no low lying MOs that can be filled to obtain tetrahedral complexes with >18 electrons. In addition, a transition metal complex with the maximum of 10 d-electrons, will receive 8 electrons from the ligands \rightarrow a total of 18 electrons.
- \blacksquare Δ_{t} is small (~4/9 Δ_{o}), so there is no particular preference for the e or $\bm{{\mathsf{t}}}_2$ orbitals to be filled (can have 8-18 electrons) – similar to class C octahedral complexes.
- $e.g. \text{ [Ni(PPh}_3)_4] \text{ (Ni}^0, d^{10}, 18 \text{-electron)}$ complex)

(3) Square planar complexes (d⁸, 16 electrons):

- \blacksquare d⁸-metals with 4 ligands : 16-electron complexes
- Common for metals and ligands high in the spectrochemical series
- **Rh^I , Ir^I , PdII , PtII , AuIII** almost always square planar, all of which are highly common oxidation states, except Au^{III}, which is quite oxidizing.
- Ni^{II} can be square planar, but only with strong π -acceptor ligands (because 1st row TMs are lower in the spectrochemical series than 2^{nd} or 3^{rd} row TMs).
- Co^l is almost never square planar because it is a first row transition metal in a low oxidation state (very low in the spectrochemical series for metals).
- \blacksquare d⁸ Cu^{III} and Ag^{III} complexes are extremely rare and highly oxidising.
- \blacksquare d⁸ Ru⁰ and Os⁰ are not square planar (2nd and 3rd row TMs but low in the spectrochemical series of metals because their oxidation state is zero).
- Cu^{II} d⁹ complexes are sometimes square planar (e.g. $[Cu^{II}(py)₄]²⁺$ – this may be considered an extreme form of Jahn-Teller distortion.

(4) Linear complexes (d¹⁰, 14 electrons):

- \blacksquare d¹⁰ metals with 2 ligands : 14-electron complexes
- Common for Ag¹, Au¹ and Hg^{II}
- Less common for Cu^I, Zn^{II} and Cd^{II}
- \blacksquare For d¹⁰ complexes, there is a relatively small energy difference between the d, s and p orbitals (e.g. 5d, 6s and 6p for Au^I).
- This permits extensive hybridization between the d_{z2} , s and p_z orbitals as shown below:

(4) Linear complexes (d¹⁰, 14 electrons):

- More common for group 11 (Cu, Ag, Au) than group 12 (Zn, Cd, Hg) because the energy difference between the d, s and p-orbitals is smaller for group 11.
- More common for the heavier elements (Ag^I, Au^I, Hg^{II}).
- *e.g.* [Ag(CN)₂][−], [Ag(NH₃)₂]⁺, [Cu(NH₃)₂]⁺, [(R₃P)AuCl], [HgMe₂], [CdMe₂], [ZnMe₂]
- However, there are also lots of tetrahedral complexes of Ag^I, Au^I, Cu^I, Zn^{II}, Cd^{II} and Hg^{II} (e.g. 14 e⁻ linear [(R₃P)AuCl] + 2 PR₃ \leftrightarrow 18 e⁻ tetrahedral [(R₃P)₃AuCl]).

- Distribution of coordination numbers for crystallographically characterized Cuⁱ, Agⁱ, and Auⁱ compounds as found in the Cambridge Structural Database.
- Alvarez, S. *et al.*, *J. Am. Chem. Soc.* **2004**, 1465-1477.

(5) Steric effects and early transition metal complexes:

Steric effects can produce low-coordinate (not many ligands) complexes which often have <18 electrons.

■ For early-mid transition metals (e.g. d^o metals) it is often not possible to fit the number of ligands around the metal that would be required to reach an electron count of 18.

(6) Strong oxidants or reductants:

 Many 18 electron complexes can be reduced or oxidized to give 17 or 19 electron complexes. Such compounds are often good oxidizing or reducing agents (*i.e.* a preference to 'get back to being' 18-electron compounds).

